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SUMMARY

As part of an investigation by the National Aeronautics and Space
Administration to determine the resistance to heating of various mate-
rials whenused as a heat sink for hypersonic airframes, hemispherical
nose-shape models of beryllium and copper have been tested in a _ch num-
ber 4 hot-air jet at stagnation temperatures of 2,000° F to 3,600° F and
Reynolds numbersof 1.88 x 106 to 2.93 X 106• The experimental results
of heating on the nose of the beryllium models agreed reasonably well
with theoretical results, whereas heating on the nose of the copper models
was almost twice that predicted by theory. Heating of the cylindrical
wall behind the hemisphere agreed fairly well with that predicted by
theory at lower temperatures. Beryllium produced a thin protective oxide
whenheated to its melting point with no tendency to ignite before melting.
Copper produced a somewhatheavier layer of oxide upon heating, and ignited
whenheated to near its melting point. These tests indicate that beryl-
lium is superior to copper as a heat-sink material because it absorbs more
heat per unit weight, has greater resistance to oxidation in heated air3
and does not ignite whenheated in air up to its melting temperature.

INTRODUCTION

The reentry of ballistic missiles into theatmosphere produces
extremely high heating rates on the missile surface. Oneof the methods
suggested for alleviating the effects of these high heating rates is the
absorption of heat into a material having a high heat capacity. The use
of heat-sink _terials offers the advantage of simplicity but adds the
penalty of additional weight to the missile airframe; therefore, it is
necessary to choose a material which will absorb the greatest amount of

*Title, Unclassified.



heat per unit weight and retain sufficient strength to support the loads
imposed on it.

Someof the other material properties which must be considered are
the rate of oxidation and ignition of the material in high-temperature
air. (See ref.'l.) Oxidation can add heat to the model and cause loss
of material. Ignition of manyof the metals takes place at temperatures
considerably below their melting points. Whenignition takes place the
entire model maybe destroyed or consumedat a rate several times that
produced by aerodynamic heating, because of the additional heat and the
mass loss due to rapid oxidation.

Beryllium and copper have been suggested because of their high heat-
capacity-to-weight ratio as comparedwith other available metals. Copper
is readily available as a material of construction and is easily formed
by conventional methods, but has the disadvartage of high density and
low strength. Beryllium has a higher heat cepacity per unit weight,
lower density, and higher strength per unit _eight than copper_ however,
beryllium is not readily available and is difficult to fabricate.

Beryllium and copper have been considered by a numberof authors as
aircraft structural materials suitable for absorption of heat as indi-
cated by references 2 and 3. Exploratory te_ts of copper and beryllium
in a high-temperature airstream are reported in references 4, 5, and 6.

As a part of NASAresearch on materials to withstand aerodynamic
heating, models of commercially pure berylli_m and copper have been
tested in the pilot model ceramic-heated air jet at the Langley Research
Center to observe the reaction of these mate_ials in high-temperature
air and makesomemeasurementsof the aerodylamic heating associated
therewith. The results of the tests, a comparison with calculated heating
for the models, and a description of the tes_ing apparatus are presented
in the present paper.

SYMBOLS

Cp

C W

D

h

I . /(_

specific heat of air at constant pressure, Btu/1o/-F

specific heat of wall, Btu/Ib/°F

diameter, ft

local aerodynamic heat-transfer co(_fficient,

Btu/(sec)(sq ft)(°F)
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M

NRe

Pt

t w

T

Taw

Tt

Tw

V

P

Pw

T

thermal conductivity of air, Btu/(sec)(sq ft)(°F/ft)

_ch number

Prandtl number, Cpp/k

Reynolds number

stagnation pressure, psia

wall thickness, ft

absolute temperature, OR

adiabatic-wall temperature, OR

stagnation temperature_ OF unless otherwise stated

wall temperature, OR

velocity, ft/sec

velocity gradient along surface near stagnation point

absolute viscosity of air_ Ib-sec/sq ft

mass density of wall_ ib/cu ft

time, sec

APPARATUS

The present series of tests were conducted in the pilot model

ceramic-heated air jet at the Langley Research Center, a photograph of

which is presented in figure i. A diagram of the construction of this

facility is presented in figure 2. This unit consists of a ceramic-

pebble-bed heat exchanger contained in a pressure tank, attached to an

M = 4 supersonic nozzle with a 4.0-inch-diameter exit exhausting to the
atmosphere.

The pebble bed consists of 3/8-inch-diameter zirconia spheres ran-

domly packed into a bed 28 inches in diameter and approximately i_ feet

high, supported by a 6-foot-high bed of 3/8-inch-diameter alumina spheres.



The pebble bed is surrounded by various t_pes of brick that are placed in
such a manneras to insulate the pebble bcdj insulate the pressure tank_
and prevent bypass flow. The brickwork i_ laid up with the joints of
the various layers staggered, with all thc_voids filled with cement, and
all the bricks tightly fitted together to prevent air from flowing through
the brickwork and thus bypassing the pebbl.ebed.

In preparation for a test, the ceramJcbed is heated by a propane-
air-oxygen burner (fig. 2) by pressure firing downthrough the pebble bed
and exhausting out of the bottom of the p_'essure vessel. Someof the
products of combustion are also allowed to. pass through the nozzle to
heat the brickwork leading to the nozzle. Whenthe ceramics are heated
to the desired temperature, the burner is closed off and air is brought
in through the bottom of the bed, heated _ile passing through the pebble
bed, and discharged through the nozzle exit.

Figure 3 presents a photograph of a model in the test section of the
ceramic-heated air jet. The model is moul_ed on a water-cooled3 movable
arm which swings the model into the jet by remote control whenthe desired
flow is established in the nozzle. The m_del can be removed from the jet
at any time during the test at the contro_Lof the operator.

Thermocouple and pressure data from both the model mounted in the
jet and related jet equipment are recorded on an oscillograph. Reactions
of the model during tests are observed vi_;ually and recorded by high-
speed motion-picture cameras. Shadowgrap]ldata are also recorded by a
motion-picture camera.

Figure 4 presents jet properties for the M = 4 nozzle operating
at a stagnation pressure of 815 psia and _t stagnation temperatures from
2,000° F to 4,000° F. Figure 4(a) presents the variation of Machnumber
and velocity with stagnation temperature. The decrease in Machnumber
with increasing temperature is due to the decrease in specific heat ratio.
Figure 4(b) presents free-stream pressure and temperature plotted against
stagnation temperature for the free jet. Figure 4(c) presents the calcu-
lated values of Reynolds numberper foot _lotted against stagnation
temperature.

Figure 4(d) presents heating rate on the stagnation point of a hemi-
spherical model for the present facility _s calculated by methods pre-
sented in references 7 and 8:

where D is the model diameter_ and the physical properties and flow
velocity of air are evaluated immediately behind the normal shock. The
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jet properties presented in figure 4 were calculated from equations pre-

sented in reference 7, with the average value of the specific heat ratio

for air being used when calculating the change in conditions accompanied

by change in free-streampressure.

MODELS AND TESTS

The present series of tests consists of heating a series of three

copper and three beryllium models in the ceramic-heated air jet. Fig-

ure 5 presents a diagram showing pertinent details of each of the three

sizes of models tested. Two models of each size were constructed -

one of beryllium and the other of copper. The 1-inch-diameter hemispher-

ical models consisted of a hemisphere supported by a cylinder of the same

material. Wall thickness was held constant at 0.125 inch. Thermocouples

were installed by spot welding them in the models at the stagnation point,

at 40 ° from the stagnation point, and approximately 1/2 inch behind the

intersection of the hemisphere and cylinder as shown in figure _. The

3/4-inch-diameter models were identical to the 1-inch-diameter models

except for the diameter. The 3/8-inch-diameter hemispherical models

were constructed with a 0.094-inch-thick wall. The only thermocouple in

this model was placed at the stagnation point.

Each model was used for three successive tests. Before each test,

the models were polished to a clean, smooth finish. The first two tests

were made at stagnation temperatures of 2,000 ° F and 2,900 ° F for 3 sec-

onds each. The third test was made at a stagnation temperature of 3,600 ° F

for i0 seconds or until the model ablated. Thermocouple outputs were

recorded as a function of time on an oscillograph. The reactions of the

models were recorded by high-speed motion-picture cameras and shadowgraphs.

RESULTS AND DISCUSSION

Visual Observations

Figure 6 presents photographs of the 1-inch-diameter beryllium and

copper models at various times during the tests and figure 7 presents

shadowgraphs of the free jet and the three model sizes during typical

tests.

Upon being heated, beryllium formed a thin, smooth protective oxide

which did not appear to increase in thickness with time or temperature.

Near the melting point, the soft beryllium was blown from the model, but

had no tendency to ignite. Visual observation of the models after the

tests showed that they did not spall or crack from thermal shock caused

by rapid heating.



Copper, as comparedwith beryllium, f_rmed a thicker oxide on the
surface. Near the melting point, the copper ignited and burned rapidly.
Because copper was relatively soft, foreigl particles from the jet caused
indentations in the surface. Copper also _howedno tendency to spall or
crack from rapid heating.

Calculation of Heating _n Models

Heating on the stagnation point and t_e 40° point on the hemisphere
of the models was calculated by methods presented in reference 8, whereas
heating on the cylinder behind the hemisphere was calculated by methods
presented in reference 9, with the values of specific heats for beryllium
and copper as presented in references i0 and ii being used. (See fig. 8.)
Rate of change of the temperature of the model wall maybe expressed as
follows:

(Taw - Tw)h
dTw = dT

PwCwtw

In the calculations, the values of m_ss density used were

115 ib/cu ft for beryllium and 559 ib/cu ft for copper. The following

assumptions were _de in the calculation cf wall heating: constant

temperature through the wall, no transport of heat due to conduction

parallel with the wall, and no loss of heat due to radiation.

Heating on the 3/8-inch-diameter model was also calculated for the

total hemisphere from the relation

h s = 0.Shstag

where h s is the heat-transfer coefficieiLt on the total frontal area

of the hemisphere and hstag is the heat..transfer coefficient at the

stagnation point.

Experimental and Calculated HeatiJ_g on Beryllium Models

Figure 9 presents the experimental a_id calculated heating data for

the 1-inch-diameter hemispherical berylli_un model at stagnation temper-

atones of 2,000 ° F, 2,900 ° F, and 3,600 ° [_. Heating at the stagnation

point and the 40 ° point of the hemisphere is slightly above that pre-

dicted by theory in the earlier part of t_le tests, whereas it is, in

general, less than that predicted in the later part of the tests. Heating
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in the earlier part of the tests more closely approximates theoretical

assu_@tion of aerodynamic heating since radiation and conduction effects

are the least at this time. Both radiation and conduction would tend to

lower the stagnation-point temperature at the later part of the test.

Heating of the cylinder behind the hemisphere agrees with theoretical

predictions in the 2,000 ° F test (fig. 9), but is less than that pre-

dicted as stagnation temperature is increased, probably because of the

increased absorption of heat from the boundary layer by the hemisphere

ahead of the cylinder as stagnation temperature is increased.

Figure i0 presents the heating data for the 3/4-inch-diameter hemi-

spherical beryllium model. Heating on the hemisphere is higher than

that predicted by theory in the early part of the test. Heating on the

cylinder behind the hemisphere follows the same pattern as that of the

1-inch-diameter beryllium model.

Figure ii presents the experimental heating data for the stagnation

point of the 3/8-inch-diameter beryllium hemispherical model and compares

these data with those obtained from theory for heating on the stagnation

pGint and on the total hemisphere. Inasmuch as the model is s_ll with

relatively thick walls, the experimental values of heating do not approx-

imate those predicted by theory since conduction and radiation are not
taken inso account.

Experimental and Calculated Heating on Copper lqodels and

Comparison With Beryllium Models

Figure 12 presents the experimental and calculated heating data for

the 1-inch-diameter copper hemispherical model for heating on the stagna-

tion point, the 40° point, and the cylinder behind the hemisphere.

Initial heating on the stagnation point and the 40 ° point is considerably

greater than that predicted by theory for laminar flow on the surface.

Because of the high heat conduction of copper_ the cylinder behind the

hemisphere heated more rapidly than predicted by theory after the initial

part of the test. As stagnation temperature is increased, the increase

of heating rate on the cylinder is less than predicted by theory and the

trends are similar to those for the beryllium models in the initial part
of the tests.

Figure 13 presents the heating data for the 3/4-inch-diameter copper
hemispherical models. The trends observed here are similar to those of

the 1-inch-diameter copper models.

Figure 12 presents the experimental and calculated heating data for

the 3/8-inch-dia_._eter copper hemispherical models. Because of the rela-

tively thick wall_ as compared with the diameter of model_ and the high



ther:r_l conductivity of copper, s_ple theory does not predict the
heating when conduction and radiation are not taken into account. A
comparison of the heating of the 3/8-inch-diameter copper model (fig. 14)
and the 3/8-inch-diameter beryllium model (fig. ii) indicates that the
copper models are heated at a higher rate than predicted by theory.

Oxidation maybe an important factor ca the heating rate even if the
depth of oxidation is less than i mil. The oxidation of berylliu_ to
berylliu_ oxide produces 27,150 Btu/ib of heryllitun, whereas the oxida-
tion of copper to cupric oxide produces 9,@80Btu/ib of copper or
5,760 Btu/ib of copper if the cuprous oxide is formed. The temperature
rise per mil of surface depth oxidized is

qt m
AT -

twC w

where

q heat formation of oxide per pound cf metal oxidized; Btu/ib

t m thickness of metal oxidized, ft

tw thickness of wall of flat plate, ft

cw heat capacity of metal wall, Btu/it/°F

Therefore, for a flat plate 0.125 inch thick, the oxidation of a layer

0.001 inch thick will increase the wall temperature 434 ° F for beryllium

and 880 ° F for copper if the cupric oxide Js formed or _13 ° F if the

cuprous oxide is formed and all of the heat of oxidation is absorbed

into the parent metal.

Since copper turns color immediately _pon entering the hot airstream

because of the oxidation on the surface 3 t_e model will be heated from

the oxidation process as well as from the serodynamic heating process.

Because the models were polished to the ba_e metal surface before they

were tested_ the high heating rates on the copper models, at the initial

part of the test, m_y possibly be due to o_idation of the polished surface.

Some of the heat rise on the beryllium models may be due to oxidation,

although the effect is not so large as for copper.

Corrections for radiation were not ma4e on the theoretical heating

of the models because no values of emissivity were available over the

temperature range the models were heated.



CONCLUSIONS

The results obtained from tests of copper and beryllium hemispher-
ical models in a Machnumber4 hot-air jet at stagnation temperatures of
2,000° F to 33600° F indicated the following:

i. Uponbeing heated, beryllium forms a thin, smooth protective
oxide which does not thicken appreciably with increasing temperature and
exhibits no tendency to ignite below its melting point. Soft beryllium
blows away near its melting point. Copper, as comparedwith beryllium,
forms a somewhatheavier oxide layer before reaching its melting point
and exhibits a tendency to burn rapidly.

2. Qualitative heat-transfer measurementson copper and beryllium
models tested under identical conditions showa trend of higher heating
rates for the copper than for the beryllium. Heating on the hemispherical
nose of the beryllium models is slightly above that predicted by theory
whereas heating on the nose of the copper models is considerably higher
than that predicted by theory. Heating on the cylinder behind the hemi-
sphere showsa trend of becoming less than that predicted by theory as
stagnation temperature is increased.

3. Calculation of the heating produced by oxidation of the surface,
even for moderate depths, showsthat oxidation maypossibly be a signif-
icant factor in raising the temperature of a thin wall.

Langley Research Center,
National Aeronautics and Space Administration_

Langley Field, Va., May 15, 1959.
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L-58-1492
Figure i.- Photograph of the pilot model ceramlc-heated air jet at the

Langley Research Center.
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Figure 2.- Diagram of the tes'] facility.
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Figure 3.- Photograph of a model in test section. L-_8-1491
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Figure 7-- Shadowgraphs of tests in free jet of M = 4 nozzle. Average

stagnation temperature, 3,600 ° F} stagnation pressure, 815 psia.
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